Motivating Algebra with Numerical Squares

EXAMPLE 1

$$
\left.\begin{array}{rl}
3^{2} & =9 \\
4^{2} & =(3+1)^{2}=(3+1)(3+1) \\
& =3^{2}+3+3+1 \\
& =9+3+3+1 \\
& =9+3+4=16
\end{array} \quad * \text { F.O.I.L. }\right)
$$

OR

$$
=9+2(3)+1=9+6+1=16
$$

EXAMPLE 2

$4^{2}=16$

$$
\left.\begin{array}{rl}
5^{2} & =(4+1)^{2}=(4+1)(4+1) \\
& =4^{2}+4+4+1 \\
& =16+4+4+1 \\
& =16+4+5=25
\end{array} \quad * \text { F.O.I.L. }\right)
$$

OR

$$
=16+2(4)+1=16+8+1=25
$$

What patterns do you see?
The square of a number, $(n+1)^{2}$, is the sum of

- the square of the previous one,
- the previous number, and
- the number

Let's generalize that using algebra.
$(n+1)^{2}=n^{2}+n+(n+1)$

OR

The square of a number, $(n+1)^{2}$, is the sum of

- the square of the previous one,
- two times the previous number, plus
- one

Let's generalize this approach using algebra.
$\left.(n+1)^{2}=n^{2}+2 n+1\right)$

[^0]
[^0]: * note that in both answers above that $(n+1)$ is "the number", i.e., n itself is not the number, but the previous number

