Algebra - Patterns of Exponents / Negative Exponents

Write this out with student(s). Follow order of numbers on left hand side, start writing with (1)
(3) continue pattern $\quad 3^{3}=27=3^{2} \quad 3=9 \quad 3$ $\div 3$
(2) then go up
$3^{2}=9=3$
(1) START \rightarrow
(4) then go down ∇
(5) continue pattern
$3^{-1}=\frac{1}{3} \quad *$ pattern from the top: $3,2,1,0 \ldots$ now -1

$$
\ldots \text { so } 1 \div 3 \text { or } \frac{1}{3}
$$

(6) let them fill in the rest
$3^{-2}=\frac{1}{3} \quad \frac{1}{3}=\frac{1}{9}=\frac{1}{3^{2}} \quad$ now it is $\frac{1}{3} \div 3$ or $\frac{1}{3} \frac{1}{3}$
(7) stop at
$3^{-3}=\frac{1}{9} \quad \frac{1}{3}=\frac{1}{27}=\frac{1}{3^{3}}$
(8) finally, generalize $3^{-n}=\frac{1}{3^{n}} \quad$ or, better yet $\quad a^{-n}=\frac{1}{a^{n}}$

Practice. Add another full pattern for 2 where student fills in whole thing from $+4 \mathrm{t}-4$. Then mixed practice. Like those below. Finally, add in algebraic examples.

$$
4^{-2}=\quad 4^{-3}=
$$

$5^{-2}=$
$5^{-3}=$
$10^{-3}=\quad 10^{-4}=$

