Algebra – Patterns of Exponents / Negative Exponents

Write this out with student(s). Follow order of numbers on left hand side, start writing with 1

(3) continue pattern
3³ = 27 = 3² 3 = 9 3
3² = 9 = 3 3
3² = 9 = 3 3
3³ = 3
(3) START →
3¹ = 3
(4) then go down ▼
3⁰ = 1
* if student doesn't know this rule, let
them discover it by seeing how
#'s + 3 going down ... or ×
$$\frac{1}{3}$$

* 3
... so $\frac{2}{3} = 1$
(5) continue pattern
3⁻¹ = $\frac{1}{3}$
* pattern from the top: 3, 2, 1, 0 ... now -1
... so 1 ÷ 3 or $\frac{1}{3}$
(6) let them fill in
the rest
3⁻² = $\frac{1}{3}$
 $\frac{1}{3} = \frac{1}{9} = \frac{1}{3^2}$
now it is $\frac{1}{3} ÷ 3$ or $\frac{1}{3}$
(7) stop at
3⁻ⁿ = $\frac{1}{3^n}$
or, better yet
 $a^{-n} = \frac{1}{a^n}$

Practice. Add another full pattern for 2 where student fills in whole thing from +4 t -4. Then mixed practice. Like those below. Finally, add in algebraic examples.

$$4^{-2} = 4^{-3} =$$

$$5^{-2} = 5^{-3} =$$

$$10^{-3} = 10^{-4} =$$